Monday, December 28, 2015

ML Algirithms - Cheat Sheets

Mind-map of Algorithm:

1. Regression Algorithms

  • Ordinary Least Squares Regression (OLSR)
  • Linear Regression
  • Logistic Regression
  • Stepwise Regression
  • Multivariate Adaptive Regression Splines (MARS)
  • Locally Estimated Scatterplot Smoothing (LOESS)

2. Instance-based Algorithms

  • k-Nearest Neighbour (kNN)
  • Learning Vector Quantization (LVQ)
  • Self-Organizing Map (SOM)
  • Locally Weighted Learning (LWL)

3. Regularization Algorithms

  • Ridge Regression
  • Least Absolute Shrinkage and Selection Operator (LASSO)
  • Elastic Net
  • Least-Angle Regression (LARS)

4. Decision Tree Algorithms

  • Classification and Regression Tree (CART)
  • Iterative Dichotomiser 3 (ID3)
  • C4.5 and C5.0 (different versions of a powerful approach)
  • Chi-squared Automatic Interaction Detection (CHAID)
  • Decision Stump
  • M5
  • Conditional Decision Trees

5. Bayesian Algorithms

  • Naive Bayes
  • Gaussian Naive Bayes
  • Multinomial Naive Bayes
  • Averaged One-Dependence Estimators (AODE)
  • Bayesian Belief Network (BBN)
  • Bayesian Network (BN)

6. Clustering Algorithms

  • k-Means
  • k-Medians
  • Expectation Maximisation (EM)
  • Hierarchical Clustering

7. Association Rule Learning Algorithms

  • Apriori algorithm
  • Eclat algorithm

8. Artificial Neural Network Algorithms

  • Perceptron
  • Back-Propagation
  • Hopfield Network
  • Radial Basis Function Network (RBFN)

9. Deep Learning Algorithms

  • Deep Boltzmann Machine (DBM)
  • Deep Belief Networks (DBN)
  • Convolutional Neural Network (CNN)
  • Stacked Auto-Encoders

10. Dimensionality Reduction Algorithms

  • Principal Component Analysis (PCA)
  • Principal Component Regression (PCR)
  • Partial Least Squares Regression (PLSR)
  • Sammon Mapping
  • Multidimensional Scaling (MDS)
  • Projection Pursuit
  • Linear Discriminant Analysis (LDA)
  • Mixture Discriminant Analysis (MDA)
  • Quadratic Discriminant Analysis (QDA)
  • Flexible Discriminant Analysis (FDA)

11. Ensemble Algorithms

  • Boosting
  • Bootstrapped Aggregation (Bagging)
  • AdaBoost
  • Stacked Generalization (blending)
  • Gradient Boosting Machines (GBM)
  • Gradient Boosted Regression Trees (GBRT)
  • Random Forest

12. Other Algorithms

  • Computational intelligence (evolutionary algorithms, etc.)
  • Computer Vision (CV)
  • Natural Language Processing (NLP)
  • Recommender Systems
  • Reinforcement Learning
  • Graphical Models 
http://antontarasenko.com/2015/12/28/machine-learning-for-economists-an-introduction/

Cheat Sheet of ML Algorithm:


http://eferm.com/machine-learning-cheat-sheet/
http://eferm.com/wp-content/uploads/2011/05/cheat3.pdf 

Azure ML Cheat Sheet: 

 Machine Learning Algorithm cheat sheet: Learn how to choose a Machine Learning algorithm.
  • https://azure.microsoft.com/en-us/documentation/articles/machine-learning-algorithm-cheat-sheet/
  • https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/ 

All ML Algo: 

 Others:

  • http://scikit-learn.org/stable/tutorial/machine_learning_map/
  • https://dzone.com/refcardz/machine-learning-predictive
  • http://www.lauradhamilton.com/machine-learning-algorithm-cheat-sheet
  • http://www.datasciencecentral.com/m/blogpost?id=6448529%3ABlogPost%3A434612 

No comments:

Post a Comment